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This paper presents a theory for the formation and evolution of coupled density staircases and
zonal shear profiles in a simple model of drift-wave turbulence. Density, vorticity, and fluctuation
potential enstrophy are the fields evolved in this system. Formation of staircase structures is due to
inhomogeneous mixing of generalized potential vorticity (PV), resulting in the sharpening of
density and vorticity gradients in some regions, and weakening them in others. When the PV
gradients steepen, the density staircase structure develops into a lattice of mesoscale “jumps,” and
“steps,” which are, respectively, the regions of local gradient steepening and flattening. The jumps
merge and migrate in radius, leading to the development of macroscale profile structures from
mesoscale elements. The positive feedback process, which drives the staircase formation occurs via
a Rhines scale dependent mixing length. We present extensive studies of bifurcation physics of the
global state, including results on the global flux-gradient relations (flux landscapes) predicted by
the model. Furthermore, we demonstrate that, depending on the sources and boundary conditions,
either a region of enhanced confinement, or a region with strong turbulence can form at the edge.
This suggests that the profile self-organization is a global process, though one which can be described
by a local, but nonlinear model. This model is the first to demonstrate how the mesoscale condensa-
tion of staircases leads to global states of enhanced confinement. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4973660]

I. INTRODUCTION

Self-generated zonal flow (ZF) shears have been a topic
of interest in the fusion community due to their important role
in suppression of turbulent transport and triggering the devel-
opment of the H-mode and internal transport barriers (ITBs)1,2

(see Ref. 3 for a general review of the zonal flows). However,
beyond magnetic fusion physics, quasi-periodic patterns of
flows are ubiquitous in nature, especially in the planetary
atmospheres (Earth,4,5 Jupiter6). In these non-fusion examples,
despite the different physics involved, the emergence of shear
layers results from the central idea of positive feedback result-
ing from inhomogeneous turbulent mixing. This leads to the
formation of regions with strong mixing and weak wave elas-
ticity,7 separated by interfaces with steepened potential vortic-
ity (PV) gradients and sharpened flows. This process can be
thought of as the PV-Phillips effect, in analogy with the
“Phillips effect”8 for which vertically homogeneous stirring
leads to inhomogeneous mixing of the background buoyancy
gradient, resulting in spontaneous layering of a stably strati-
fied fluid. The Phillips effect has been extensively studied. It
has also been clearly demonstrated experimentally by
Ruddick et al.9 The PV-Phillips effect makes a similar argu-
ment for positive-feedback resulting from inhomogeneous lat-
eral mixing of PV along stratification surfaces. Formation and
sharpening of jets is related to PV mixing via PV inversion.
Moreover, Juckes and McIntyre10 argue that straining of the

turbulence by jet shear can considerably enhance the positive
feedback. In this work, we show that a reduced model of two
coupled mean fields exhibits both the formation of staircases
in the mean density field, and a lattice of layers/jumps in the
mean vorticity field. Reference 11 reported the observation of
a quasi-periodic E!B flow pattern in the numerical results of
gyrokinetic simulations. This was termed the “E!B
staircase,” inspired by the aforementioned planetary analogs.
These staircases were spontaneously formed, and self-
organizing, with a long lifespan. Moreover, Ti corrugations
coincided with these flow shears. In-between the shear layers,
regions of turbulent avalanching exist. Furthermore, Ref. 12
reported the experimental evidence for coherent shearing-
turbulence modulational states in the Tore Supra tokamak.
These results are consistent with interpretation as an E!B
staircase, though much more data is required to make a con-
clusive identification. What is missing in both of these works
is the explanation of what the underlying mechanism is by
which these shear patterns and pressure corrugations sponta-
neously form and exist over long periods of time. Hence, com-
puter simulations and experimental observations alone are not
sufficient and the need for a reduced model is clear.

There have been extensive theoretical studies on the
nonlinear growth rates of zonal shearing fields and their
comparison to numerical simulations13–16 of drift waves
(DW) turbulence systems. Also, there have been some efforts
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towards understanding the saturation mechanisms of zonal
flows.13,17,18 The trade off of energy between the zonal
shearing fields and the turbulence populations have been
studied using reduced predator-prey models.19 The well
established self-regulating “predator-prey” feedback loop
nature of the DW-ZF system has been observed in numerous
experiments20,21 simulations.22 This suggests that the models
of staircase formation should continue in this vein.

However, the spatial structure of the zonal shearing
fields and their evolution in time and space remain poorly
understood. Understanding of the evolution of the mesoscale
structure of the mean density and shearing fields in both time
and space is the motivation and focus of this work. Here, we
explore a theoretical model for the study of a simple DW-ZF
flow turbulence system. By studying the spatial structure of
the shearing field and the density profile, we aim to achieve a
goal of a better understanding of two main subjects:

(1) The evolution and formation of quasiperiodic mesoscale
density staircase structure, and the associated mesoscale
shearing lattice pattern.

(2) Emergence of a steady state, macroscale transport barrier
from the mesoscale density staircase, as a result of a global
transport bifurcation. Note, the point here is that a meso-
scale pattern condenses to form a macroscopic barrier.
This is different from a direct transition on macroscales.

The basic physics model of DW-ZF flow turbulence was
developed from fundamental ideas for 2D and quasi-
geostrophic (QG) fluid dynamics. Hasegawa, Mima, and col-
laborators first emphasized the relevance of these ideas to
drift wave system. We present a brief primer of the key ideas
of these models below, in outline form.

– All of the 2D fluid QG and Hasegawa-Mima (HM) equa-
tions are statements of potential vorticity (PV) conserva-
tion along fluid trajectories. For HM model, PV " q
¼ log n$ q2

sr2ðe/=TÞ.
– All of these systems support two inviscid quadratic invari-

ants, energy and potential enstrophy (PE), where PE is
defined as U ¼ 1

2 q2.
– Dual conservation forces a dual cascade, forward for

potential enstrophy and inverse for energy. The inverse
energy cascade generates flow structures on a large scale.

– The forward cascade (to small scale dissipation) of poten-
tial enstrophy implies that PV is mixed and coupled to
small-scale dissipation.

– PV mixing and any inhomogeneity in the mean PV profile
(i.e., a seed in the shear) imply that there will be a PV flux,
or transport. One element of a PV flux is a vorticity flux,
i.e., h~vrr2 ~/i 6¼ 0. Here, the inhomogeneity is radial.

– A vorticity flux, and one direction of symmetry (toroidal,
in a tokamak, azimuthal in 2D models) in turn imply a
Reynolds Force (i.e., h~vrr2 ~/i ¼ @rh~vr~vhi 6¼ 0), and thus
the ZF generation.

This reduced model is based upon the Hasegawa-
Wakatani (HW) system of equations for DW turbulence.23,24

The HW system is a simple 2D system describing the colli-
sional drift wave instability driven turbulence which con-
serves the energy and PE. Furthermore, conservation of PE

leads to the spontaneous generation of ZF by turbulence
(Reynolds stress). Following the theoretical prediction of ZF
generation by DW turbulence, turbulence-driven ZF was
observed in nonlinear simulations of various fluid plasma
turbulence models.25–29

Our system variables are functions of time and radius,
and consist of the mean (reduced) density n (defined in Eq.
(5)), the mean vorticity u, and the turbulent PE e. In order to
obtain the system of nonlinear equations, mean field expres-
sions for the flux of particles and vorticity obtained for the
HW system30 are used. Furthermore, mixing length estimates
are constructed to obtain the functional forms for the nonlin-
ear, local diffusion coefficients. The prescription for the mix-
ing length form (which is also employed in Refs. 31 and 32)
is similar to the one presented in Ref. 33 by Balmforth et al
for their model of buoyancy layering in a the stably stratified
fluid, in that it is a nonlinear hybrid of two length scales; a
constant forcing scale l0 and a dynamic length scale which is
a function of the system variable. In our system, this
dynamic length scale is taken to be the Rhines scale lRh

(defined in Eq. (38)), which is a function of e and the mean
potential vorticity gradient (@xq).31,32 The choice of the func-
tional form of lRh is essential for the positive feedback which
drives the feature forming instabilities and leads to the for-
mation of nonlinear density staircase and shearing lattice.
PV is conserved along the fluid trajectories. Inhomogeneous
mixing leads to a sequence of mixed layers and regions of
profile steepening. Inhomogeneity is assured by the synergy
of coherent modulation with gradient dependent feedback
through lRh.

Numerical solutions of our reduced model show that the
evolution of structures proceeds in roughly three stages. The
structures develop from linear instabilities in small micro-
scales. These are secondary modulational instabilities, in con-
trast to the primary linear DW instabilities. These features
evolve to large amplitude, mesoscale structures by local reor-
ganization and coalescence. At larger scales, coalescence stops
and the structures detach from their position of formation and
propagate towards the boundaries, until the evolution ends
with the formation of a steady macroscale barrier. We should
note that a pattern propagation was also advocated by Kosuga
et al.,34,35 in an alternative theory approach to E!B shear
layer pattern formation due to the propagation of heat-flux
modulations.

For the study of the global transport bifurcation of the
steady macro-state, an external particle flux drive, C0, is
used for a control parameter. We observe that the steady
macro-state of a system driven by an external particle flux
undergoes a global transport bifurcation, from a normal con-
finement (NC) state to an enhanced confinement state (EC),
as the amplitude of the flux drive increases beyond a thresh-
old of transition Cth. The EC state is characterized by a flat-
tened density profile in the inner region, while in the outer
region, the density profile is steep, and the levels of turbulent
PE and turbulent particle flux drop considerably, relative to
the inner region. We also explore the globally averaged par-
ticle flux-density gradient landscape and observe the hystere-
sis behavior as C0 is first increased and then decreased.
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The rest of this paper is organized as follows: In Section
II, the derivation of the nonlinear reduced model for 2D HW
system is presented, which includes three nonlinear coupled
evolution equation for the system variables, density, vortic-
ity, and turbulent PE. In Section II A, the mixing length func-
tion is introduced and the physics of Rhines scale is
discussed. In Section II B, the condition for linear instability
of the simple equilibria for the reduced model is obtained, in
search of the parameter ranges where the formation of non-
linear structures is possible. In Section III, detailed numeri-
cal results are presented for the solution of the reduced
model equations. The structure formation is traced from
microscale linear instabilities to the formation of mesoscale
barriers, and finally the formation of macro barriers. In
Section III B, the dependence of the solutions on some of the
parameters is discussed, including turbulence spreading of
PE, initial density gradient, and the collisional viscosity. In
Section IV, an external particle flux drive is added to the
density equation, and the mean profile structure emerging
from this dynamics and the transport bifurcation of the
steady state are studied. In Section IV A, the particle flux-
density gradient landscape is explored, and in Section IV B,
the physics of hysteresis in the global flux-gradient relation
is analyzed. We summarize the findings and discuss the
directions of our related future works in the discussion and
conclusion, Section V.

II. THE MODEL

The model equations23 which describe the electrostatic
DW turbulence in a straight magnetic field are the vorticity
equation

d

dt
r2u
! "

¼ gr2
k log N $ uð Þ þ lcr4

?u; (1)

and the continuity equation:

d

dt
log N ¼ gr2

k log N $ uð Þ þ Dcr2
? log N: (2)

Here N is the electron density, and u ¼ e/=Te is the non-
dimensional electric potential, g ¼ Te=me!eiqscs is the non-
dimensional parallel diffusion coefficient, time is normalized
to 1=xci ¼ mic=eB (xci is the ion cyclotron frequency), and
the spatial dimensions are normalized to qs ¼ ðTe=miÞ1=2=xci,
the ion sound radius. The terms proportional to lu and Dc are
respectively the collisional viscosity and diffusivity terms
which remove energy from fine scales. The convective deriva-
tive is given by

d

dt
¼ @

@t
þ vE:r; (3)

vE ¼ ẑ !ru: (4)

Moreover, the notation is simplified by defining n, v, and u as

n " logðN=N0Þ; v " vE; u " r2
?u; (5)

where n is the reduced density, and N0 is a normalization
constant. n, N, v, and u are expanded in terms of a mean part
and a perturbation part as

n ¼ hniþ dnðx; y; z; tÞ;
N ¼ hNiþ dNðx; y; z; tÞ; (6)

where the averaging is over the directions of symmetry
(z, y). With the assumption of small perturbations ð" ¼ dN=
hNi( 1Þ, we obtain

log N ) log hNiþ dN

hNi
$ 1

2

dN

hNi

# $2

þ * * * (7)

Comparing Eqs. (7) and (6), we obtain

hni ) log
hNi
N0
þ O "2ð Þ; (8)

dn ) dN

hNi
þ O "2ð Þ: (9)

Similar to Eq. (6), u and v are expanded to obtain

u ¼ huiþ duðx; y; z; tÞ
v ¼ hviŷ þ dvðx; y; z; tÞ; (10)

where hui ¼ @xhvi. Equations (1) and (2) are averaged over
the directions of symmetry to obtain the time evolution equa-
tions for the mean density n and vorticity u

@thuiþ @xhdvxdui$ lcr2
?hui ¼ 0; (11)

@thniþ @xhdvxdni$ Dcr2
?hni ¼ 0: (12)

Subtracting Eqs. (11) and (12) from Eqs. (1) and (2), the
fluctuation equations are obtained as

ð@t þ hvi@yÞdnþ fdu; dngþ dvx@xhni$ lcr2
?dn

¼ gr2
kðdn$ duÞ; (13)

ð@t þ hvi@yÞduþ fdu; dugþ dvx@
2
x hvi$ Dcr2

?du

¼ gr2
kðdn$ duÞ: (14)

The set of Eqs. (13) and (14) are the nonlinear HW equations
in the presence of the flow and flow shear as an additional
source of free energy. These equations locally conserve the
potential vorticity (PV) which is defined as q¼ n $ u, up to
the collisional dissipation terms. PV mixing and transport
has been shown to be fundamental to the formation of zonal
flows.4 PV is similarly described in terms of a mean and fluc-
tuation term

q ¼ hqiþ dqðx; y; z; tÞ: (15)

We subtract Eq. (13) from Eq. (14) to obtain the evolution
equation for dq¼ dn $ du

ð@t þ hvi@yÞdqþ fdu; dqgþ dvx@xhqi$ lr2
?dq ¼ 0; (16)

where only the viscous dissipation is kept as the dominant
turbulence dissipation mechanism. Multiplying the above
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equation by dq and averaging over the directions of symme-
try yields

@thdq2iþ @xhdvxdq2i ¼ $hdvxdqi@xhqi$ lehjr?dqj2iþ P;

(17)

where le ) ðlc þ k2
?DcÞ=ð1þ k2

?Þ is the effective collisional
diffusion of the turbulent PE. The above equation describes
the time evolution of the turbulent potential enstrophy

e ¼ hdq2i=2: (18)

The second term is the nonlinear spreading of the turbulent
PE flux. The third term is the internal turbulence production
mechanism which converts the mean PE into turbulent PE
(and vice versa). This production term conserves the total PE
of the system. The fourth term is the turbulence dissipation
term resulting from the forward cascade of turbulent PE
toward the small dissipation scale. The last term P is an
external source of turbulence production. Following Ref. 30,
the quasilinear expression for turbulent PV flux Cq ¼
hdvxdqi is

hdvxdqi ¼ $v@xhqi; (19)

v ¼
X

m

cm

jhvi$ xm=kmj2
hdu2

mi; m ¼ m; n; lð Þ; (20)

where in Eq. (20), the summation is over all the azimuthal m,
parallel n, and radial l drift mode numbers, cm is the mode
growth rate, xm is the mode eigenfrequency, and km is the
azimuthal wave number. In the near-adiabatic regime, for

which the parallel diffusion rate gk2
k is the dominant rate

(i.e., gk2
k + xm; kmhvi), DW frequency is given by

xm ¼
kmvd xð Þ
1þ k2

?
; (21)

vdðxÞ ¼ $@xhni; (22)

where k2
? ¼ k2

r þ k2
m ¼ $ðr2

?duÞ=du, and k? is the perpen-

dicular mode number. In Eq. (21), the DW frequency is pro-
portional to the local density gradient. Hence, the quasilinear
expression for turbulent particle flux C ¼ hdvxdni, is given
by30

C ¼ $Dn@xhniþ Vpinch; (23)

Dn xð Þ ¼
X

m

k2
?

1þ k2
?

k2
m

gk2
k
hdu2

mi; (24)

Vpinch xð Þ ¼ hvi
X

m

k2
m

gk2
k
hdu2

mi
 !

: (25)

In deriving Eqs. (23) and (24), the modes are taken to be
local drift waves (DW). In our future work, we will investi-
gate the global modes, for which the eigenfrequencies and
growth rates are constant in radius. These global modes are
pertinent to magnetic shear-free devices, such as linear
machines, for which the width of the modes span the whole

plasma radius. We add that in tokamaks with approximately
flat safety factor (q) profile, due to the weak magnetic shear
modes that can spread over the flat-q region. The convective
pinch term defined in Eq. (25) results from the mean E!B
flow velocity. The turbulent vorticity flux P ¼ hdvxdui is
given by30

P ¼ ðv$ DnÞ@xhni$ v@2
x hvi; (26)

where v and Dn are respectively given by Eqs. (20) and (24).
The first term on the right-hand-side (RHS) of Eq. (26) is the
residual vorticity. Through this term, the free energy of den-
sity gradient can be converted into positive Reynolds work,
resulting in the generation of flow shear. The second term on
the RHS is the turbulent viscous diffusion, which is responsi-
ble for relaxing the vorticity gradient through dissipation.
The quasilinear expressions in Eqs. (19), (23), and (26) are
used to build the reduced turbulence model.

Based on these arguments, the set of reduced evolution
equations describing the system is given by

@tn ¼ @xDn@xnþ Dc@
2
x n; (27)

@tu ¼ @xðDn $ vÞ@xnþ v@2
x uþ lc@

2
x u; (28)

@te ¼ @xDe@xeþ v½@xðn$ uÞ-2 $ e$1=2
c e3=2 þ P; (29)

where in Eqs. (27)–(29), h i has been dropped to simplify
the notation. Thus, from here forward n, u, and e respectively
represent the mean density, vorticity, and fluctuation PE. In
Eq. (29) the term $e$1=2

c e3=2 is the dissipative term, resulting
from the forward cascade of PE (enstrophy dissipation rate is
ðe=ecÞ1=2, and ec is a non-dimensional parameter). The parti-
cle pinch term Vpinch is assumed to be negligible compared
to the diffusive terms and is not included in Eq. (27). Effects
of Vpinch will be studied in future works. Furthermore,
Fickian diffusive flux form is used for the turbulent flux of
PE: hdvxei ¼ $De@xe, where De is the turbulent PE diffusion
coefficient. The external turbulence production source in Eq.
(29), i.e., P, is due to sources of free energy which are exter-
nal to the closed system described by Eqs. (1) and (2). The
production term due to this mechanism has the form P ¼ cee;
it is linear in e and is proportional to ce, the characteristic
growth of the instabilities responsible for P. Alternatively,
one can adopt the mechanism of stirring as the method for
driving the turbulence in the system. Stirring creates wakes
at a rate given by U. Turbulence will break down these
wakes on a timescale given by the eddy turnover rate e$1=2.
As a result, the stirring production term is given by
P ¼ U2e1=2. Adopting either form for P gives similar results;
thus we use the former mechanism as the external production
term.

Imposing the condition @xe¼ 0 at the boundaries pre-
vents the influx-outflux of turbulent PE. As a result, the sys-
tem described by the set of Eqs. (27)–(29), manifestly
conserves the total PE (sum of mean and turbulent PE), up to
damping terms and external forcing. We show this as fol-
lows: we subtract Eq. (28) from Eq. (27), multiply the result
by n – u, add the result with Eq. (29), and integrate over x to
obtain
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@tE ¼
ðL

0

@t
n$ uð Þ2

2
þ @te

# $
dx

¼
ðL

0

P$ e$1
c e3=2 þ Dc þ lc½ -@xn@xu

&

$ lc @xuð Þ2 $ Dc @xnð Þ2Þdx: (30)

In obtaining Eq. (30), the internal turbulence PE produc-
tion term (second term on the RHS of Eq. (29)) is cancelled
by the corresponding loss term in the evolution equation for
the mean PE.

Mixing the length and phenomenological arguments are
used to obtain the functional form of the turbulent diffusion
coefficients Dn, v and De in Eqs. (11), (12), and (17). Using
the quasilinear flux relations Eqs. (20) and (24), and in the

near-adiabatic timescale ordering gk2
k + xm + kmv, Dn and

v are obtained (gk2
k is the parallel resistive diffusion rate).

For Dn, the approximation jkmduj ¼ jdvxj ) le1=2 gives

Dn )
k2
?

1þ k2
?

k2
mjduj2

gk2
k
ffi l2

e
a
; (31)

where the parameter a is defined as the measure of the resis-

tive diffusion rate in the parallel direction: a ¼ 1þk2
?

k2
?

gk2
k.

From Eq. (20) for v we can see that (unlike Eq. (24) for Dn)
the denominator of the argument of the sum is not dominated

by the large parallel diffusion rate gk2
k; rather it is a competi-

tion between the wave frequency x and the flow shear. We
obtain the functional form of v in the limit of no flow-shear
and then modify it to include the effect of flow shear. In the
absence of flow shear, instabilities are collisional drift waves
driven by the free energy of the density gradient. Therefore
cm is given primarily by that of DWs, and is reduced by a
viscous damping rate

cm ¼ cDW $ cl ¼ cv
x2

m

a
; cDW ¼

k2
?

1þ k2
?

x2
m

gk2
k
; (32)

where cDW is the DW growth rate in the near adiabatic
regime (gk2

k + xm), and $cl is the viscous damping rate of
the mode and cv ¼ 1$ cl=cDW . From Eq. (20), we obtain

v xð Þ ¼
X

m

cm

jhvi$ xm=kmj2
hdu2

mi

)
cv

x2
m

a
x2

m

jkmduj2 ) cvl2 e
a
: (33)

The strength of turbulent viscosity (v) involves the constant-
multiplier cv. In obtaining Eq. (33), we used Eq. (32) for
cm and the approximations jkmduj ¼ jdvxj ) le1=2 and
hvi( xm=km. Furthermore, the effect of strong flow shears
is incorporated into v using the following prescription:

v xð Þ ffi cvl2 effiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ auu2
p : (34)

Finally, the following form is employed to approximate the
scattering of turbulence intensity De:

DeðxÞ ffi bl2e1=2: (35)

The form of De is chosen based on dimensional arguments
(l for spatial variation and e$1=2 for time variation), and the
parameter b is adjustable so as to explore the effect of turbu-
lence spreading of PE by varying it.

A. The mixing length

The Rhines scale is an emergent intensity dependent
scale in DW - quasi-geostrophic turbulence. The Rhines scale
lRh is defined by the crossing of eddy turnover rate and the
three-wave mismatch frequency for drift waves xMM/x. At
l/ lRh, the DW frequency is approximately given by

x ) $ kx@xn

1þ k2
?
) lRhj@xqj; (36)

where the simplifying assumption k2
? > 1 has been made.

Eddy turnover rate can be approximated as

1=sc ¼
dv
lRh
/ e1=2: (37)

Equating the wave time-scales Eq. (36) to eddy time-scale
Eq. (37) we obtain the Rhines scale as

lRh ¼
ffiffi
e
p

j@xqj
: (38)

For l< lRh, the turbulence is eddy-like and the inverse cas-
cade occurs. For l> lRh the turbulence is weak and wave-like
and co-exists with the ZF (as resonant interaction occurs by
DW-ZF coupling). Nonlinear coupling is weaker for l> lRh.
As lRh / ð@xqÞ$1, steeper gradients will drive lRh smaller,
ensuring weaker mixing for a larger band of scales. This cre-
ates the required feedback loop, which weakens the transport
as gradients steepen. Note this follows from the basic struc-
ture of the wave dispersion and mode coupling.

It is useful to contrast the Rhines scale and the standard
mixing length theory. In the mixing length theory (as prac-
ticed in fusion transport modeling), one takes eddy turnover
rate of order wave frequency and estimates the level of
turbulence dn/n/ k?Ln. In the Rhines model, one uses the
known turbulence level and estimates the scale for cross-
over implied by that level. It is evident that these two models
are really equivalent.

In this model, inhomogeneous mixing of PV results
from the dynamic mixing length, l. We employ the following
model for the mixing length

l ¼ l0

1þ l2
0 @x n$ uð Þ½ -2=e

& (j=2
: (39)

In the above equation, l0 is the length-scale related to the tur-
bulent forcing mechanism and the other significant length-
scale in the system is the Rhines scale, ðlRh ¼

ffiffi
e
p
=j@xqjÞ. In

a system with weak mean PV gradient such that l0< lRh, l0 is
the natural choice for the length-scale of turbulent mixing. In
quasi-2D HW system, energy inverse-cascades from the
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forcing scale l0 to larger length scales, while enstrophy for-
ward cascades from l0 to the small dissipation scale ld.
Eddies in the inverse energy cascade spectral range (i.e.,
l< l0) grow in size, become slower and more wave-like, and
gradually transform into drift waves at the Rhines scale. In
the limit where the PV gradient is weak (i.e., ljRh is larger
than l0) the mixing length is given by the forcing length scale
l0. However, locally the PV gradient of the system can
become strong enough such that lRh< l0 and the mixing
length can be approximated by l / l1$j

0 ljRh. At these locations
of steep PV gradient, lRh is the governing spatial scale for the
turbulence.

The choice of mixing length given by Eq. (39) is a crucial
element of this model. It acts to close the feedback on PV gra-
dient steepening by reducing the turbulent diffusivity, and tur-
bulence intensity (represented by e). The feedback loop
develops from steepening in the mean PV gradient, which is
followed by the drop in local turbulent PE, i.e., e, due to PE
conservation. With the choice of Eq. (39) for the mixing length,
rise in @xq and drop in e further result in the drop of l and of
turbulent PV, i.e., Cq. This in turn further contributes to the
steepening of the mean PV, and this closes the feedback loop.

Instabilities driven by this feedback loop mechanism
result from a local transport bifurcation. Manifestation of the
transport bifurcation in the turbulent flux versus the mean
gradient relation is the formation of an S-curve, similar to
the solid curve in Fig. 1. The S-curve consists of two stable
mean gradient ranges at which dCq=djrqj > 0, enclosing
the region of negative diffusion at which dCq=djrqj < 0.
The positive feedback loop in the negative diffusion region
drives the instabilities which lead to nonlinear feature forma-
tion in the mean profile.

We reduce the number of parameters in the system by
the following rescaling choices:

x̂ ¼ x=L; t̂ ¼ cet l0=Lð Þ2; ê ¼ e=c2
e ;

n̂ ¼ n
l0

Lce
; û ¼ u

l0

Lce
; (40)

l̂ ¼ l=l0; â ¼ a=ce; l̂c ¼ lc=ðcel
2
0Þ; âu ¼ auðL=l0Þ2: (41)

As a result, the rescaled set of evolution equations is given
by

@tn ¼ @x
l2e
a

# $
@xn

) *
þ Dc@

2
x n; (42)

@tu ¼ @x
l2e
a
$ cvl2effiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ auu2
p

 !

@xn

" #

þ cvl2effiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ auu2
p @2

x uþ lc@
2
x u; (43)

@te ¼ b@x l2e1=2@xe
+ ,

þ K
cvl2effiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ auu2
p @x n$ uð Þ½ -2 $

e3=2

e1=2
c

þ e

" #

; (44)

where we have defined K ¼ L2=l2
0 and dropped the hat sym-

bols to simplify our notation. The rescaled nondimensional
form of l is given by

l ¼ 1

1þ @x n$ uð Þ½ -2=e
& (j=2

: (45)

B. Equilibria and their stability

Here we look for the parameter ranges in which the
equilibria are unstable, and there is possibility for the growth
and formation of structures in density and vorticity profiles.
We consider the equilibrium solutions for which the system
has a uniform density gradient, uniform turbulent PE, and no
flow shear

@xn ¼ $g0; u ¼ 0; e ¼ e0: (46)

For these equilibrium conditions from Eq. (44) and for a
steady solution of the PE density equation, we have

cv

a 1þ g2
0=e0

! "j g2
0 $

e1=2

e1=2
0

þ 1 ¼ 0: (47)

The above equation expresses the balance between the pro-
duction terms and the dissipation term in the steady state.
From Eq. (47), for a given g0, e0 can be obtained. Flux of PV
for these equilibrium values, and for the simple case of
lc¼Dc is given by

Cq g0ð Þ ¼ Cn $ Cu ¼
cve0

a 1þ g2
0=e0

! "j g0 þ lcg0; (48)

where Cq is a function of the single parameter g0. In the
Appendix, we show that the linear perturbations are unstable if

dCq

dg0
< 0: (49)

The above condition expresses the negative diffusion of
PV. In Fig. 1, we have plotted Cq versus g0 using the relation

FIG. 1. Plot of the flux of PV versus the density gradient for the calculated
equilibrium values obtained for a¼ 10, e0¼ 9, and lc¼ 1.5. The dashed
curve is only the turbulent PV flux and the solid curve includes the colli-
sional diffusion (/ lc), which results in the second positive slope branch of
the curve.
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given for Cq in Eq. (48) for the values a¼ 10, e0¼ 9, and
Dc¼lc¼ 1.5. The dashed curve is only the turbulent part of
PV flux (Cq – lcg0) and the solid curve (known in the litera-
ture as the “S-curve”) includes the collisional diffusion
(/lc), which results in the second positive slope branch of
the curve. From Fig. 1, we can see that for the range of val-
ues of 4.5< g0< 7.5, the condition given by Eq. (49) is satis-
fied, and as a result, the equilibria within this parameter
range are unstable.

III. NUMERICAL SOLUTIONS OF THE REDUCED
MODEL

In this section, the numerical solutions of the nonlinear
Eqs. (42), (43), and (44) are explored. A finite difference
method in space is used, and the time integration is per-
formed using the Runge-Kutta-Fehlberg method. Initial con-
ditions are chosen as

nðx; t ¼ 0Þ ¼ $gix; uðx; t ¼ 0Þ ¼ 0; eðx; t ¼ 0Þ ¼ ei:

(50)

The values gi, ei are taken from the region in parameter space
which is linearly unstable. The boundary conditions are as
follows:

nð0; tÞ ¼ 0; nð1; tÞ ¼ $gi; (51)

uð0; tÞ ¼ uð1; tÞ ¼ 0: (52)

With the above boundary condition (BC) for density, the
value of n is maintained at a constant value through fluxes of
density at the boundaries (@xnðx ¼ 0; 1; tÞ 6¼ 0). Moreover,
Eq. (52) sets the radial flux of azimuthal momentum at the
boundaries to zero (since u ¼ @xv). For the turbulent PE
equation, both choices of BC are explored

eð0; tÞ ¼ eð1; tÞ ¼ ei; (53)

@xeð0; tÞ ¼ @xeð1; tÞ ¼ 0: (54)

In Section IV, the value of the density at x¼ 0 is allowed to
evolve due to an external particle source (written as the
divergence of an imposed particle source) sharply peaked at
x¼ 0.

A. Formation and evolution of density staircase
and vorticity corrugation

Numerical solutions of the system exhibit roughly three
stages of evolution (1) development of nonlinear mesoscale
features from microscale instabilities (2) evolution of meso-
scale structure through local merger processes leading to the
formation of mesoscale barriers (3) detachment of the struc-
tures from their conception locations and their migration
towards the boundaries resulting in the formation of the
steady macroscale structure. Each stage of evolution has a
characteristic time-scale and length-scale.

In the first stage, features develop in the profiles due to
the linear instability of the initial profiles. Growth of these
instabilities results in the formation of nonlinear features in
the mean profiles, as well as in the turbulent PE profile. In
the density profile, these features are in the form of stair-
cases; i.e., series of jumps (steepening) and steps (flattening)
in the density profile. Simultaneously, the vorticity profile
develops the jagged (corrugated) features. These developed
features have a quasi-periodic pattern with a characteristic
length scale lq.

Figure 2 shows the density gradient profile shown at the
early stages of evolution, up to t¼ 0.2, for the following set
of parameters: K ¼ 4000; cv ¼ 0:95; a ¼ 6; ec ¼ 6:25; b ¼
0:1; lc ¼ 0:78, and for the initial values gi ¼ 5:1; ei ¼ 0:002,
and with Dirichlet BCs for PE ðeðx ¼ 0; 1; tÞ ¼ 0Þ. For the
choice of Dirichlet BCs for PE, feature formation starts at
the boundaries and spreads to the inner region. The peaks

FIG. 2. Snapshots of density and vortic-
ity profiles at times (2(a)) t¼ 8! 10$3,
(2(b)) t¼ 1.5! 10$2, (2(c)) t¼ 4! 10$2,
and (2(d)) t¼ 0.2, showing the forma-
tion of steps from the boundaries
towards the center of plasma for
K¼ 4000, cv¼ 0.95, a¼ 6, ec¼ 6.25,
b¼ 0.1, lc¼ 0.78. Initial values are
gi¼ 5.1, ei¼ 0.002, and with Dirichlet
BCs for PE (e(x¼ 0, 1; t)¼ 0).
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correspond to jumps in the density profile, and the troughs
correspond to steps, or local flattenings, of the density pro-
file. Moreover, between the times t¼ 0.04 and t¼ 0.2, two of
the peaks in the range 0.5< x< 0.6 dissolve into neighboring
peaks. Formation of steps in the density profile is accompa-
nied by the formation of corrugations in the vorticity profile
(u). Figure 2 also shows the formation of vorticity profile
structures. Similar to the density profile, feature formation in
the vorticity profile also starts at the boundaries and spreads
to the inner regions.

However, for the choice of Neumann BCs for PE
ð@xeðx ¼ 0; 1; tÞ ¼ 0Þ, feature formation in profiles is differ-
ent from that observed previously, in that the initial instabil-
ity grows almost at a uniform amplitude all along the radius.
An example for a solution with Neumann BCs for PE is
depicted in Fig. 3. These snapshots in time show that the fea-
tures form uniformly along the radius, in contrast to Fig. 2(a)
where the feature formation started at the boundaries and
propagated towards the center.

The mean profiles evolve and transform through the pro-
cess of local mergers. Merger between two jumps is shown
in Fig. 4(a), and the merger between two steps is shown in
Fig. 4(b). In Fig. 4(a), from the time t¼ 0.55, the trough at
x) 0.75 gradually rises and dissolves before t) 0.65. In Fig.
4(b), from t¼ 0.9, the peak at x) 0.65 gradually falls and
dissolves before t) 1.05. Dissolution of a peak is a merger
between two steps (in the n profile), and the dissolution of a

trough is a merger between two jumps (in the n profile).
Merger of two jumps (steps) results in a wider jump (step).

Figure 5 shows the dynamics of vorticity profile, while
the process of merger shown in Fig. 4 occurs in the density
profile. The locations of the jumps (steps) in n coincide with
locations of maximum negative (positive) slope in u.
Moreover, merger results in increase in the amplitude of the
resulting shearing layer in the vorticity profile.

Formation of steps in the density profile is accompanied
by the formation of features in turbulent PE profile e. Figure
6 compares the rn profile with the e profile at the time
t¼ 0.2. The level of e is reduced at the spatial locations of
jump in the density profile (peaks of $rn). The PE profile
in Fig. 6 forms from a small and uniform initial value of
ei¼ 0.002. The value of e quickly reaches the level compara-
ble to Fig. 6. This level is the equilibrium solution value set
by the initial value of the density gradient gi. As a result, the
solutions are not sensitive to the initial value of e, so gi is the
control parameter of the system which determines the evolu-
tion of the solutions.

The process of mesoscale mergers gradually slows
down and stops. Although beyond this evolutionary time,
and away from the boundaries, the profiles formed are
locally stationary, they will still evolve globally through spa-
tial migration. Density staircase and the shear lattice detach
from their positions of formation and migrate towards the
boundaries. Migrating density barriers and shear layers

FIG. 3. Snapshots of density and vorticity profiles at times (3(a)) t¼ 1.7! 10$2, (3(b)) t¼ 1.95! 10$2, and (3(c)) t¼ 0.1, showing the global formation of
steps in density profile and shear layers for the same parameters of Fig. 2, and with Neumann BCs for PE (@xe(x¼ 0, 1; t)¼ 0).

FIG. 4. Snapshots of the density profile (0.5< x< 0.8) at times (a) t¼ 0.55 (blue), t¼ 0.635 (orange), and t¼ 0.65 (black), showing the merger between two
jumps; and (b) t¼ 0.9 (blue), t¼ 1.026 (orange), and t¼ 1.05 (black) showing the merger between two steps.
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condense as they reach the boundaries. This process contin-
ues until the steady, macroscale density barrier and the mac-
roscale shearing profile form. Figure 7 shows the density and
shearing profile during the migration stage. In Fig. 7(a), the
density barriers move up the density gradient in an
“escalator-like” motion. Moreover, Fig. 7(b) shows that
along with the density profile, the shearing pattern moves in
the same direction (i.e., to the left) and condenses at the
boundary. The profile migration process takes place over a
much longer evolutionary time /Oð104Þ, in comparison to
the earlier stages of evolution /Oð102Þ (note that time is
scaled to c$1

e ðL=l0Þ2, where ce is the external production).
Therefore, most of the lifetime of the mesoscale features is
spent migrating.

Evolution of density profile from the initial to the final
macrostate is shown in a contour plot in Fig. 8. Different
evolutionary stages are: (a) Formation of nonlinear features
from linear instabilities and fast merger of micro-steps into
meso-steps. (b) Coalescence of meso-steps into barriers. (c)
Propagation of barriers along the gradient, and condensation
at boundaries. (d) The stationary profile. At the same time,
the vorticity (or shearing) profile evolves from the initial
state for u¼ 0. Figure shows the evolutionary landscape of
the vorticity profile u, as a function of position x and time t,
for the same simulation run as Fig. 8. Evolution of the vortic-
ity profile undergoes the identical stages: from micro to
meso to the stationary macro profile (Fig. 9).

B. Parameter variation

The set of system equations depends on a large number
of parameters. Here, we discuss the dependence of the
numerical results on some of the parameters in the system
namely, the PE turbulence spreading multiplier b, the initial
density gradient g0, and the collisional viscosity lc.
Turbulence spreading is necessary for regulating the steepen-
ing in the PE turbulence profiles, and its absence will result
in extreme sharpness in the gradients rendering the numeri-
cal solutions extremely stiff and practically unsolvable.
Moreover, we find that the initial PV gradient to be the con-
trol parameter determining the outcome of the solutions and
initial e has little effect on the solutions. In our case, this is
because we choose the initial system to be shear free, i.e.,
u(t¼ 0)¼ 0, so the initial PV is identical to the initial density

FIG. 5. Snapshots of the vorticity profiles for the same solution as Fig. 4, at times (a) t¼ 0.55 (blue), t¼ 0.635 (orange), and t¼ 0.65 (black); and (a) t¼ 0.9
(blue), t¼ 1.026 (orange), and t¼ 1.05 (black).

FIG. 6. Reduction in turbulence PE at the location of jumps in the density
profile for the same parameters of Fig. 2.

FIG. 7. (a) Upward, escalator-like
migration of the step at times t¼ 700 and
t¼ 1300. (b) Detachment of shearing
pattern from the location of formation,
and migration towards the boundary.
Reprinted with permission from
Ashourvan and Diamond, Phys. Rev. E
94, 051202(R) (2016). Copyright 2016
American Physical Society.36
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gradient. Furthermore, since in most of the relevant realistic
physical examples, the Prandtl number Pr¼ lc/Dc is large,
lc is the more interesting physical damping parameter.

As the system variables evolve from their initial value, e
quickly reaches its equilibrium value set by the initial
density gradient through Eq. (47). As a result, the numerical
solutions are not sensitive to ei. However, the initial value of

the density gradient gi is a control parameter that determines
the evolution of the solutions. The maximum number of
jumps formed during a simulation run can be controlled via
gi. Figure 10 shows the number of jumps formed at an early
stage of evolution (t¼ 0.1). As gi is raised, two jumps form
at gi¼ 4.2. Increasing the value of the initial density gradient
from gi¼ 4.2 to gi¼ 5.1 results in the formation of larger
number of jumps. Further increasing the density gradient
from gi¼ 5.1 to 5.7 will reduce the number of jumps formed.
Beyond gi¼ 5.7, no jumps or steps form in the system.

The width of the jump regions and step region which
build the shape of the patterns is also sensitive to the initial
value of the density gradient gi. With increasing the initial
value of the mean density gradient, the width of jumps
increases while the width of steps decreases. Figure 11
shows the density gradient profile of three solutions with ini-
tial density gradients (11(a)) gi¼ 4.3, (11(b)) gi¼ 5.1, and
(11(c)) gi¼ 5.5. In each solution, the density profile consists
of three jumps. However, each solution arrives at its related
profile from different evolution of paths. For the solution
related to Fig. 11(a), with an initial density gradient of
gi¼ 4.3, at first four jumps form. After a merger between
two of the steps, a snapshot of density gradient profile is
taken at t¼ 2. For the solution in Fig. 11(b), initially fourteen
jumps form in the system; after a much longer evolutionary
time including ten mergers, at t¼ 800, a snapshot is taken
from the profile. Note that this profile of the system is in the
more advanced stage of spatial migration towards the left
boundary. For the solution in Fig. 11(c), with gi¼ 5.5, the
maximum number of three jumps form, and this snapshot of
the profile is taken at t¼ 2. Comparing the Figs. 11(a), 11(b),
and 11(c) shows the width of the jumps increases with the
value of the initial density gradient.

Large turbulence spreading wipes out features on
smaller spatial scales in the mean field profiles, resulting in
the formation of density and vorticity patterns with broader
spatial scales. Thus, for the same set of initial conditions, the
mode number of the linear instabilities which develops into
staircases can be controlled via the turbulence spreading
parameter b. Equation (A15) in the Appendix gives mmax,
the mode number cutoff for the linearly unstable modes
which is inversely proportional to turbulence spreading

FIG. 8. Contour plot of the time evolution of jrnj along the plasma radius,
for the same parameters as Fig. 2. Horizontal axis is the log of time, and the
vertical axis shows the scaled radial location. Different stages of evolution
are: (a) Fast merger of micro-steps and formation of meso-steps. (b)
Coalescence of meso-steps to barriers. (c) Barriers propagate along the gra-
dient, condense at boundaries. (d) Stationary profile. Reprinted with permis-
sion from Ashourvan and Diamond, Phys. Rev. E 94, 051202(R) (2016).
Copyright 2016 American Physical Society.36

FIG. 9. Evolutionary landscape of the vorticity profile u (i.e., the shearing
profile), as a function of position x and time t, for the same simulation run as
Fig. 8. Reprinted with permission from Ashourvan and Diamond, Phys. Rev.
E 94, 051202(R) (2016). Copyright 2016 American Physical Society.36

FIG. 10. Number of steps formed versus the initial density gradient
g0¼$@xn, for two different viscosity values lc¼ 0.78 (squares) and
lc¼ 1.18 (triangles).
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parameter b. Reducing b, increases mmax, which results for-
mation of more steps in the density profile. On the other
hand, an increase in b will stabilize the high wave numbers,
resulting in the development of features with smoother spa-
tial variation. Our numerical results show that lower b results
in the formation of more steps in the density profile, which
emerges from the linear instabilities with higher mode num-
bers predicted by Eq. (A15) (see Fig. 12).

IV. FLUX DRIVEN EVOLUTION

In this section, we add an external particle flux drive to
the density equation and use its amplitude C0 (see Eq. (57))
as a control parameter. This flux drive source is chosen to be
a peaked function at the origin. Our goal is to study: (i) the
mean profile structure emerging from this dynamics (ii)
transport bifurcation of the steady state (iii) variation with
C0 of the macroscopic steady state profiles of vorticity (i.e.,
shearing), density, turbulence, and particle flux and (iv)
global and local flux-gradient landscapes.

For the density BC, at the origin, we choose the
Neumann BC ð@xnðx ¼ 0; tÞ ¼ 0Þ, and Dirichlet BC on the
outer boundary nðx ¼ 1; tÞ ¼ 0. The rest of the boundary
conditions are uð0; tÞ ¼ uð1; tÞ ¼ 0; @xeð0; tÞ ¼ @xeð1; tÞ ¼ 0.
Initial conditions for vorticity u and turbulent PE e are identi-
cal to Section III. For the initial condition of the density, we
choose a function of the form

n0 xð Þ ¼ $gi x$ 1þ 1

b
e$bx $ e$b½ -

# $
; (55)

where we take b¼ 20. This initial condition satisfies the cho-
sen BCs for density. Moreover, away from the origin, the ini-
tial density gradient profile given by Eq. (55) is uniform and
close to $gi (see Fig. 13 for an example of the initial density
profile given by Eq. (55) with gi¼ 4.5). The density equation
with the flux drive is given by

@tn ¼ @x
l2e
a

# $
@xn

) *
þ Dc@

2
x n$ @xCdr xð Þ: (56)

We choose the following form for Cdr

CdrðxÞ ¼ C0 expð$x=DdrÞ: (57)

C0 is the drive amplitude, and Ddr is the width associated
with the drive. In our solutions, we take Ddr¼ 0.1 as the con-
stant. Dependence on alternative functional forms of flux
drive, both in space and time will be studied in a future
work. We can rewrite Eq. (56) as following:

@tn ¼ $@xCtot; Ctotðx; tÞ ¼ Cðx; tÞ þ CdrðxÞ; (58)

FIG. 11. Change in step width, with the change in the initial density gradient: (11(a)) gi¼ 4.3, (11(b)) gi¼ 5.1, and (11(c)) gi¼ 5.5.

FIG. 12. Sharp decrease in the maximum number of the formed mesoscale
steps versus the strength of turbulence spreading at early simulation times
t¼ 0.01.

FIG. 13. Initial density profile given by the function n0(x) in Eq. (55)
(b¼ 20), for gi¼ 4.5.
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where we defined C(x, t) as the sum of the turbulent diffusion
flux and the collisional diffusion flux

C x; tð Þ ¼ $
l2e
a

# $
þ Dc

) *
@xn: (59)

Thus with our choice of Neumann BC for n, the internal par-
ticle flux must satisfy the Dirichlet BC at x¼ 0 (i.e., C(0,
t)¼ 0). As the solutions evolve to their final steady state, the
total flux on the RHS of Eq. (58) saturates and becomes uni-
form. Thus, the steady internal particle flux C, defined in Eq.
(59), must balance the external particle flux Cdr, and is given
by

CðxÞ ¼ Cdrð0Þ $ CdrðxÞ: (60)

C(x) is a function of the steady solutions of nðxÞ; eðxÞ and
u(x).

Figure 14 shows the development of system variables
(n, u, and e) from initial, to their final steady state, for con-
stant values of drive amplitude (i.e., C0), C2¼ 6.84 (Figs.
14(a), 14(b), and 14(c)) and C1¼ 6.7 (Figs. 14(d), 14(e),
and 14(f)). The parameters chosen for this solution are
b ¼ 0:1; a ¼ 4:5; lc ¼ 6; cv ¼ 0:9;K ¼ 5000; ec ¼ 2:2 and
we have taken the Prandtl number to be Pr ¼ lc=Dc ¼ 5.

For these values, a transport bifurcation of the steady-state
takes place for C0 > Cth ) 6:838, and thus C1 < Cth < C2.
For both C1 and C2, staircases form, with five jumps in the
density profiles, in the early time of t¼ 0.06. For C2, merger
between the steps leads to the formation of the stationary
macro-step at time t) 20, and at the location xstep¼ 0.62.
Further raising of C0 (beyond C2) will move xstep to the left,
resulting in a narrower step and higher density (n) at x¼ 0.
However, for C1<Cth, the leftmost jump propagates to the
right, and condensates and dissolves at x¼ 1. As a result, the
steady solution for C1 has no steady macro-step in its profile.

Transport bifurcation of the steady macro-state is shown
in Fig. 15, by comparing the steady-state of the two solutions
in Fig. 14, i.e., for C1 and C2. Figure 15(a) shows the rise in
n with the formation of macro-step, and Fig. 15(b) depicts
the drop in e level in the density jump region (x> 0.62).
Moreover, Fig. 15(d) shows a drop in the turbulent particle
flux beyond xstep which implies that the steady macro-step
acts as a barrier for the turbulent transport of particles.
Furthermore, Fig. 15(c) shows the sign reversal of u for C2

compared to C1 (except in the close vicinity of x¼ 0) along
with the enhancement of its amplitude. The characteristics
of the macro-state solutions for C0>Cth lead us to define
these states as enhanced confinement modes (EC modes). In

FIG. 14. Flux driven system with an initial density profile given by Fig. 13, for flux drive amplitudes C0¼ 6.7<Cth and C0¼ 6.84>Cth, where the threshold
flux amplitude for transition is Cth¼ 6.838. Parameters of the solutions are: b¼ 0.1, a¼ 4.5, l¼ 6, cv¼ 0.9, K¼ 5000, ec¼ 2.2, and Pr¼ 5.
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contrast, the solutions for C0<Cth are the normal confine-
ment modes (NC modes).

The flux drive can build up the density gradient such
that it would be large enough to undergo transport bifurca-
tion. Therefore, a non-zero initial density gradient is not a
necessary condition for the transport bifurcation of the
steady macro-state. Figure 16 shows the evolution of the pro-
files for a system evolving from a flat density profile (gi¼ 0),
for two amplitudes of flux drive, both greater than the thresh-
old of transition which for gi¼ 0 is Cth) 7.39 (parameters of
the system are identical to those of Fig. 15). The values of
the flux amplitude are C0¼ 7.4 for Figs. 16(a), 16(b), and
16(c), which is very close to Cth, and a larger amplitude
C0¼ 10 for Figs. 16(d), 16(e), and 16(f). With these values
of C0, a transport bifurcation takes place in the system which
results in the formation of a barrier in the density profile.
The density profile in Fig. 16(a) evolves smoothly from t¼ 0
to t) 3. This evolving density profile has a maximum gradi-
ent at the right boundary of the system (x¼ 1). As the density
grows, so does its gradient and at t) 3, the value of the den-
sity gradient reaches a value for which the profile becomes
linearly unstable. This instability starts from x¼ 1, develops
to a step-jump form and moves towards left. The reason that
only one step-jump forms, (instead of a staircase) is due to
the fact that the density gradient profile becomes locally
unstable, (in the immediate vicinity of x¼ 1), while the rest
of the system is still stable. If the density gradient grows uni-
formly over a large range, then it will be possible for a
multi-step staircase feature to form. For example, since the

density profile in Fig. 13 has a uniform gradient for x ! 0.3,
solutions that use this profile as their initial condition exhibit
the multi-step staircase formation in Fig. 14. At t) 8 the pro-
file reaches its stationary state with the final position of the
step at xstep) 0.26. Moreover, in the profile for turbulent PE
(Fig. 16(b)), at the time of transition t) 3, the right side of
the e profile drops; propagates to the left, and comes to stop
at the stationary position xstep) 0.26.

Figures 16(d), 16(e), and 16(f) show the development of
profiles to their steady macro-state for C0¼ 10, which is fur-
ther above Cth) 7.39. Figure 16(d) shows that as the profile
develops, the steepest point is at x) 0.27 (which can be seen
on the t¼ 0.13 curve), and as a result, step forming instabil-
ity starts from this location. At time t¼ 0.22, and at x) 0.27,
a jump develops in the density profile. As time goes on, this
jump broadens and develops into the steady state barrier (full
black curve); barrier position is at xstep) 0.12. Further
increasing C0 will result in further displacement of xstep to
the left. In the limit of C + 1, xstep approaches the left
boundary (xstep! 0).

A. Mean flux-gradient relation and landscape

Transport bifurcation in the global flux-density relation
of the system appears as a gap in the unstable regions of
global variables (i.e., radially averaged flux and density), as
the steady-state radial profiles of system variables undergo
drastic transformations. The global particle flux-density gra-
dient relation of the steady macro states is mapped in Fig.
17. These data points are the results of individual solutions

FIG. 15. Comparison between the final
stationary profiles of two solutions
with flux drive amplitudes C1¼ 6.7
and C2¼ 6.84, which are respectively
below and above the threshold ampli-
tude for transition Cth) 6.838.
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at a constant C0, which evolve into their steady state.
Diamonds represent solutions with initially flat density gradi-
ent (gi¼ 0), and triangles represent solutions with initial den-
sity profile given by Fig. 13 (gi¼ 4.5). The vertical and the
horizontal axes are, respectively, the radially averaged C(x)
and $@xn. With the assumed choice of a Dirichlet BC for the
density at x¼ 1 (i.e., n(1, t)¼ 0), for h$@xni we get

h$@xni ¼
ð1

0

½$@xnðx; tÞ-dx ¼ nð0; tÞ: (61)

Moreover, since the steady state particle flux is given by Eq.
(60), the spatially averaged flux is given by

hCi ¼
ð1

0

CðxÞdx ¼ C0½1$ Ddrð1$ e$1=DdrÞ-: (62)

Equation (62) shows that hCi is a linearly increasing function
of C0. Moreover, Fig. 17 shows that h$@xni is a monotoni-
cally increasing function of C0. There are two gaps in the
steady solutions (shown by double headed arrows). Solutions
with values of ðh$@xni; hCiÞ in these gaps are linearly unsta-
ble (see Eq. (49)). As a result, steady state solutions cannot
exist within the gaps. By raising C0, the value of hCi
increases continuously and the gap in the data manifests as a
jump in h$@xni, as a result of a global transport bifurcation.
Solutions on the right side of the gap are EC states, and solu-
tions on the left side of the gap are NC states. Away from the
gaps, the ðh$@xni; hCiÞ values of the solutions with gi¼ 4.5
and gi¼ 0 overlap.

While the global flux-gradient diagram exhibits the global
transport bifurcation in the system, the local flux-gradient

FIG. 16. Evolution of variables of a flux driven system, starting from an initially flat density profile, for flux drive amplitudes of C¼ 7.4 in 16(a), 16(b), and
16(c), and for flux drive amplitudes of C¼ 10 in 16(d), 16(e), and 16(f). Both of the flux amplitudes are above the threshold amplitude of transition Cth) 7.39,
and as a result for both solutions, a stationary barrier forms.

FIG. 17. Volume averaged particle flux versus the volume averaged density
gradient for the final stationary state of the system.
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relation (i.e., as a function of radius) shows how the variables
at different radial locations behave, as this transition occurs.
Figure 18 gives the local landscape of C(x) versus $@xn versus
x for gi¼ 4.5. Each curve in the plot is the steady solution for a
constant value of C0. ECs form for C0 ! Cth ¼ 6:838 and are
shown in shades of red. NC form for C0<Cth and are depicted
in gray scale. Projection of these curves on the @xn¼ 0 plain
gives the C(x) versus x dependence described by Eq. (60), as
the value of C0 is raised. In addition, projection of these curves
on C¼ 0 gives the steady profiles of the density gradient $@xn
versus x. At Cth the location of the barrier step xstep is the far-
thest to the right at x) 0.65, and as C0 is raised, xstep moves to
the left. As a result, a gap exists in the data set which is pointed
out with a dashed rectangle for x> 0.65 and C) 6.838.

B. Hysteresis in flux-gradient relation

The global flux-gradient relation of the system can
exhibit hysteresis as the flux drive amplitude C0 is first
raised, and then lowered, in one parameter scan run. Time
variation of Cdr is adiabatic, so that at all times, the system is
close to a steady state solution, except for the short transition
times. The functional form of Cdr is the same as Eq. (60), as
C0 varies with time. From t¼ 0 to t¼ 10, C0 is kept at a con-
stant, so that during this time, the system variables evolve
and reach the steady state. From t¼ 10 to t¼ 1010, flux
amplitude grows linearly from C0¼ 6 to C0¼ 8, and from
t¼ 1010 to t¼ 2010, the flux amplitude decreases linearly
from C0¼ 8 to C0¼ 6.

Figure 19 shows the flux-gradient relation of the process
described above. Two different transitions can occur. The
forward transition (FT) occurs for C0 ¼ Cf

th ) 7:39, as C0 is
increased, and the backward transition (BT) occurs for
C0 ¼ Cb

th ) 6:838, as C0 is decreased. Critical transition
points along the hysteresis loop are noted (A, B, C, and D).
The A-B, and C-D gaps result from the transport bifurcation,

leading, respectively, to barrier formation in the FT, and bar-
rier annihilation in BT. The loop formed due to the separa-
tion between the FT and the BT, results from transport
bifurcation taking place at different values of Cth in each
direction. This loop is a clear evidence for hysteresis behav-
ior in this process.

Fig. 20 shows the transformation of the steady-state pro-
files at the critical transition points of Fig. 19. Curves labeled
A and B are snapshots of the profiles for which C0 is, respec-
tively, slightly below and slightly above Cf

th, i.e.,
C0jA " Cf

th " C0jB (in the BT, C0jD " Cb
th " C0jC). During

these fast transitions, (shown in blue solid arrows), the system
is not in steady-state. From B to C, as C0 is raised from Cf

th to
8 and then lowered to Cb

th, the barrier position xstep gradually,
first moves from xstep) 0.26 to xstep) 0.24, and then moves to
xstep) 0.65. Finally, the transition from EC (curve C) to NC
(curve D) occurs at Cb

th. The timescale for this transition is
DCD/ 10. During this time, while xstep moves from x) 0.65
to x¼ 1, height of the barrier decreases to zero.

V. DISCUSSION AND CONCLUSION

The HW DW-turbulence system is extensively studied
and conserves both the energy and potential enstrophy up to
dissipation terms. In our model, the total PE conservation is
a central feature in the evolution of profiles. More specifi-
cally, it is the mixing of potential vorticity that regulates the
interaction between the mean fields and the turbulence
through an internal turbulence production term which con-
verts the mean PE to fluctuation PE. The model uses a
dynamic mixing length which is a nonlinear function of the
Rhines scale lRh. As a result, through its lRh dependence, the
mixing length is a nonlinear function of the PV gradient. The
choice of mixing length is a crucial element of this model,
which closes the positive feedback-loop on PV. This feed-
back loop results in local transport bifurcations due to inho-
mogeneous mixing of PV. As a result, nonlinear features
form in the mean profiles. These nonlinear structures are the
density staircases and the shear lattice patterns and transport
barriers. Hence, our reduced turbulence model of two cou-
pled mean fields exhibits results which are similar to both
the spontaneous layering in a stratified fluid in Ref. 33, and

FIG. 19. Global particle flux versus density gradient, showing hysteresis
behavior. Reprinted with permission from Ashourvan and Diamond, Phys.
Rev. E 94, 051202(R) (2016). Copyright 2016 American Physical Society.36

FIG. 18. Flux landscape of the local C(x) versus $@xn versus x for gi¼ 4.5.
Shades of red are for the enhanced confinement states (EC) and gray scale is
for the normal confinement state (NC). Lighter or brighter shades are used to
accentuate the three-dimensional sense and do not represent a varying physi-
cal quantity.
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the formation and sharpening of jet shear layers in planetary
atmospheres in Refs. 4, 6, and 10. Indeed, in this system, the
two layerings occur together and are closely related. The
density staircase is similar to the buoyancy field layering
while the shear jumps resemble the jet staircase. Of course
here, shear jumps support the density corrugations.

By numerically solving the nonlinear system of equa-
tions of our reduced model, we study the evolution of the
mean and turbulence fields from their initial values. Here is a
summary of our results:

(i) Structure formation is observed and proceeds through
(roughly) three different evolutionary stages:
(1) In the first stage, the nonlinear quasi-periodic fea-

tures in density and vorticity profile develop from
the (linear) secondary modulational instabilities
(primary instabilities are the DWs). The staircase
features locally reorganize and transform through
the process of merger which reduces the rough-
ness of the overall pattern, resulting in the forma-
tion of mesoscale staircases and shear lattices.

(2) In the second stage of evolution, local transforma-
tion of profiles through merger continues. As the
spatial scale of the structures grows, mergers
become less frequent and eventually stop.

(3) In the third stage of evolution, the structures in
density and vorticity profile detach from their
locations of formation and propagate (or migrate)
towards the boundaries. When the steps in the
staircase structure and shear layers reach the
boundaries, they condense and are sometimes
absorbed into the boundaries. The migration

process continues until the final steady macro-
barriers form. This process occurs in a much
longer time - about two orders of magnitude
larger than that of the first two stages.

(ii) The number of jumps and steps formed in a staircase
in its early evolutionary stage is sensitive to the initial
PV gradient, gi. As seen in Fig. 10, with increasing gi

from small to large values, the number of steps
increases from zero to a maximum value, and then
decreases to zero, again.

(iii) Spreading of turbulent PE is found to be necessary
in the formation of structures as it regulates the steep-
ening in the e profile. Eq. (A15) shows that the maxi-
mum wave number for the feature forming
instabilities is inversely proportional to b, the coeffi-
cient controlling the strength of turbulent PE spread-
ing. Results of numerical simulation show that
lowering b results in the formation of more steps and
jumps in the density profile. Moreover, below a criti-
cal value of b, the numerical solutions become too
stiff, due to the very fine spatial scale of instabilities
and extreme local steepening of gradients. On the
other hand, raising b results in the formation of
smaller number of jumps-steps in the staircase pro-
files. In the extreme case of large b, the turbulent
spreading of PE prevents the formation of any spatial
structures in the mean fields.

(iv) The steady macro-state of a system driven by an
external particle flux undergoes a transport bifurca-
tion, from a normal confinement (NC) state to an
enhanced confinement state (EC), as the amplitude of
the flux drive is increased beyond a threshold for

FIG. 20. Transformation in the profiles
of (15a) density, (15b) vorticity, (15c)
turbulent PE, and (15d) turbulent parti-
cle flux. Forward transition is from A
to B, and backward transition is from
C to D. Reprinted with permission
from Ashourvan and Diamond, Phys.
Rev. E 94, 051202(R) (2016).
Copyright 2016 American Physical
Society.36
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transition Cth. The density profile of the EC state is
one of a step (flattened profile) in the inner region,
located adjacent to a jump (steepened profile) at the
edge. NC density profile is smooth, with no jump-step
features. As C0 is increased above Cth, and at the tran-
sition from NC to EC, the value of the density at the
axis (x¼ 0) discontinuously increases to a higher
value. For the EC state, in the outside “jump” region,
the level of turbulent PE as well as the turbulent parti-
cle flux drop, in comparison to these levels in the
inside “step” region. With the transition from NC to
EC state, the shearing profile changes sign except in
the close vicinity of the axis. Also the amplitude of
the shearing increases as the result of this transition
(see Fig. 15 for examples of EC (solid curves) and
NC (dashed curves) profiles of mean density, mean
vorticity, turbulent PE, and turbulent particle flux).

(v) The global particle flux versus the density gradient rela-
tion exhibits hysteresis: While raising C0 adiabatically
in time, the forward transition from NC to EC takes
place at C0 ¼ Cf

th. Decreasing the flux drive will result
in a transition from NC to EC, at C0 ¼ Cb

th < Cf
th.

Difference in paths the system takes for the forward
and backward transition results in the formation of a
hysteresis loop in the global particle flux versus the
density gradient relation of the macro-state.

The reduced model presented here exhibits the global
emergence of quasi-periodic mesoscale density staircase
structures, colocated with a shearing lattice, and the evolu-
tion of these meso structures to the macro steady state.
Moreover, the numerical simulation results are sensitive to
the boundary conditions, and the choice of BC can drasti-
cally impact the results.

The simplicity of this reduced model facilitates its
extension to more complex scenarios such as the ITG/TEM-
ETG turbulence system. This task can be carried out by
inclusion of other mean fields such as the electron and ion
temperatures, as well as a second population of turbulence
which interacts with the mean fields and the first turbulence
population. The aim, there, would be, to understand stair-
cases in other fields such as ion and electron temperatures,
and to examine the possible spatial phase lags between them,
resulting from multi-scale interactions.
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APPENDIX: LINEAR INSTABILITY CONDITIONS FOR
THE PV PROFILE

Here, we analyze the stability of the equilibrium of the
PV and PE system.33 First we rewrite these equations as

gt ¼ Gxx; et ¼ ½rex-x þ p; (A1)

where g¼$@xq and

G ¼ cve
a 1þ g2=eð Þj gþ lg; (A2)

p ¼ cve
a 1þ g2=eð Þj g2 $ e3=2

e1=2
0

þ e; (A3)

r ¼ b
e1=2

1þ g2=eð Þj : (A4)

The equilibrium solution satisfies

pðg0; e0Þ ¼ 0; Gðg0; e0Þ ¼ Cqðg0Þ: (A5)

From the above equation, we obtain the following relation
for the flux gradient function:

C0qðg0Þ ¼ ðpeGg $ pgGeÞ=pe; (A6)

where all the partial derivatives are evaluated for the equilib-
rium values g0 and e0. Now we assume the linear perturba-
tions of the form

g¼ g0þdgexpðstþ imxÞ; e¼ e0þde expðstþ imxÞ: (A7)

Substituting from Eq. (A7) in Eq. (A1), we obtain the linear-
ized equations as

sdg ¼ $m2ðfgdgþ fedeÞ; (A8)

sde ¼ $m2rdeþ pedeþ pgdg: (A9)

Above equations result in the following equation for s:

s2 þ ½m2ðrþ GgÞ $ pe-s$ m2C0qpe þ m4rfg ¼ 0: (A10)

Marginally stable solutions are obtained for s) 0. From Eq.
(A10), these solutions are obtained for

m2 ) 0; (A11)

m2 ¼ peC0q=rfg: (A12)

For m2) 0, we solve for s to obtain

s ) $m2C0q; ðdg; deÞ ) ð1;$pg=peÞ: (A13)

From the above equation, we can see that in order for the
modes to be unstable (s> 0) we must have

C0qðg0Þ < 0: (A14)

Moreover Eq. (A12) gives the maximum wave number for
the unstable modes

m2
max ¼ peC0q=rfg: (A15)
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